Novel modification by L/F-tRNA-protein transferase (LFTR) generates a Leu/N-degron ligand in Escherichia coli

Author:

Ottofuelling Ralf D.,Ninnis Robert L.,Truscott Kaye N.ORCID,Dougan David A.ORCID

Abstract

ABSTRACTThe N-degron pathways are a set of proteolytic systems that relate the half-life of a protein to its N-terminal (Nt) residue. In Escherchia coli the principal N-degron pathway is known as the Leu/N-degron pathway of which an Nt Leu is a key feature of the degron. Although the physiological role of the Leu/N-degron pathway is currently unclear, many of the components of the pathway are well defined. Proteins degraded by this pathway contain an Nt degradation signal (N-degron) composed of an Nt primary destabilizing (Nd1) residue (Leu, Phe, Trp or Tyr) and an unstructured region which generally contains a hydrophobic element. Most N-degrons are generated from a pro-N-degron, either by endoproteolytic cleavage, or by enzymatic attachment of a Nd1 residue (Leu or Phe) to the N-terminus of a protein (or protein fragment) by the enzyme Leu/Phe tRNA protein transferase (LFTR) in a non-ribosomal manner. Regardless of the mode of generation, all Leu/N-degrons are recognized by ClpS and delivered to the ClpAP protease for degradation. To date, only two physiological Leu/N-degron bearing substrates have been verified, one of which (PATase) is modified by LFTR. In this study, we have examined the substrate proteome of LFTR during stationary phase. From this analysis, we have identified several additional physiological Leu/N-degron ligands, including AldB, which is modified by a previously undescribed activity of LFTR. Importantly, the novel specificity of LFTR was confirmed in vitro, using a range of model proteins. Our data shows that processing of the Nt-Met of AldB generates a novel substrate for LFTR. Importantly, the LFTR-dependent modification of T2-AldB is essential for its turnover by ClpAPS, in vitro. To further examine the acceptor specificity of LFTR, we performed a systematic analysis using a series of peptide arrays. These data reveal that the identity of the second residue modulates substrate conjugation with positively charged residues being favored and negatively charged and aromatic residues being disfavored. Collectively, these findings extend our understanding of LFTR specificity and the Leu/N-degron pathway in E. coli.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3