CLUH interactome reveals an association to SPAG5 and a proximity to the translation of mitochondrial protein

Author:

Hémono Mickaële,Haller Alexandre,Chicher Johana,Duchêne Anne-Marie,Ngondo Richard PatrykORCID

Abstract

ABSTRACTMitochondria require thousands of proteins to fulfil their essential function in energy production and other fundamental biological processes. These proteins are mostly encoded by the nuclear genome, translated in the cytoplasm before being imported into the organelle. RNA binding proteins (RBPs) are central players in the regulation of this process by affecting mRNA translation, stability or localization. CLUH is an RBP recognizing specifically mRNAs coding for mitochondrial proteins, but its precise molecular function and interacting partners remain undiscovered in mammals. Here we reveal for the first time CLUH interactome in mammalian cells. Using both co-IP and BioID proximity-labeling approaches, we identify novel molecular partners interacting stably or transiently with CLUH in HCT116 cells and mouse embryonic stem cells. We reveal a stable RNA-independent interaction of CLUH with itself and with SPAG5 in cytosolic granular structures. More importantly, we uncover an unexpected proximity of CLUH to mitochondrial proteins and their cognate mRNAs in the cytosol. Additionally, our data highlight the importance of CLUH TPR domain for its interactions with both proteins and mRNAs. Overall, through the analysis of CLUH interactome, our study sheds a new light on CLUH molecular function by highlighting its association to the translation and subcellular localization of some mRNAs coding for mitochondrial proteins.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Mitochondrial form and function

2. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations;Nucleic Acids Res,2021

3. Bykov YS , Rapaport D , Herrmann JM , Schuldiner M . Cytosolic Events in the Biogenesis of Mitochondrial Proteins. Trends Biochem Sci. The Authors; 2020;:1–18.

4. Membrane-Associated RNA-Binding Proteins Orchestrate Organelle-Coupled Translation

5. Localized translation near the mitochondrial outer membrane: An update

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3