Global change differentially modulates coral physiology and suggests future shifts in Caribbean reef assemblages

Author:

Bove Colleen BORCID,Davies Sarah W,Ries Justin B,Umbanhowar James,Thomasson Bailey C,Farquhar Elizabeth B,McCoppin Jessica A,Castillo Karl D

Abstract

AbstractGlobal change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal endosymbionts ise particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of the coral holobiont (animal host + algal symbiont) of three Caribbean coral species from two reef environments after exposure to simulated ocean warming (28, 31 °C), acidification (300 - 3290 μatm), and the combination of stressors for 93 days. We used multidimensional analyses to assess how multiple coral holobiont physiological parameters respond to ocean acidification and warming. Our results demonstrate significantly diminishing holobiont physiology in S. siderea and P. astreoides in response to projected ocean acidification, while future warming elicited severe declines in P. strigosa. Offshore S. siderea fragments exhibited higher physiological plasticity than inshore counterparts, suggesting that this offshore population has the capacity to modulate their physiology in response to changing conditions, but at a cost to the holobiont. Plasticity of P. strigosa and P. astreoides was not clearly different between natal reef environments, however, temperature evoked a greater plastic response in both species. Interestingly, while these species exhibit unique physiological responses to ocean acidification and warming, when data from all three species are modeled together, convergent stress responses to these conditions are observed, highlighting the overall sensitivities of tropical corals to these stressors. Our results demonstrate that while ocean warming is a severe acute stressor that will have dire consequences for coral reefs globally, chronic exposure to acidification may also impact coral physiology to a greater extent than previously assumed. The variety of responses to global change we observe across species will likely manifest in altered Caribbean reef assemblages in the future.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3