Abstract
AbstractTreatments for amblyopia focus on vision therapy and patching of one eye. Predicting the success of these methods remains difficult, however. Recent research has used binocular rivalry to monitor visual cortical plasticity during occlusion therapy, leading to a successful prediction of the recovery rate of the amblyopic eye. The underlying mechanisms and their relation to neural homeostatic plasticity are not known. Here we propose a spiking neural network to explain the effect of short-term monocular deprivation on binocular rivalry. The model reproduces perceptual switches as observed experimentally. When one eye is occluded, inhibitory plasticity changes the balance between the eyes and leads to longer dominance periods for the eye that has been deprived. The model suggests that homeostatic inhibitory plasticity is a critical component of the observed effects and might play an important role in the recovery from amblyopia.
Publisher
Cold Spring Harbor Laboratory