Unloxing the assembly and activation mechanism of Cre recombinase using Cryo-EM

Author:

Stachowski KyeORCID,Norris AndrewORCID,Potter Devante,Wysocki VickiORCID,Foster Mark P.ORCID

Abstract

AbstractMechanistic understanding of the structural basis for DNA recombination in the Cre-loxP system has largely been guided by crystallographic structures of tetrameric synaptic complexes (intasomes). These structural and biochemical studies have suggested that conformational changes and DNA bending in presynaptic complexes underlie site-selection and activation mechanisms of Cre recombinase. Here we used protein engineering and various DNA substrates to isolate the Cre-loxP (54 kDa), Cre2-loxP (110 kDa), and Cre4-loxP2 assembly intermediates, and determined their structures using cryo-EM to resolutions of 3.9 Å, 4.5 Å, and 3.2 Å, respectively. Progressive DNA bending along the assembly pathway enables formation of increasingly intimate protein-protein interfaces. Insufficient stabilization of important protein motifs observed during the assembly process provides a compelling explanation for the observed half-the-sites activity, and preferential bottom strand cleavage of loxP sequences. We found that selection of loxP sites is largely dependent on Cre’s ability to bend and stabilize the spacer region between two recombinase binding elements. Application of 3D variability analysis to the tetramer data reveals a propensity for motion along the pathway between protomer activation and Holliday junction isomerization. These findings help us to better understand loxP site specificity, controlled activation of alternating protomers, the basis for the observed bias of strand cleavage order, and the importance of conformational sampling, especially with regards to site-selection and activity among Cre variants. Furthermore, our findings provide invaluable information for the rational development of designer, site-specific recombinases for use as gene editing technologies.HighlightsCryo-EM structures of Cre-loxP assembly intermediates (monomer, dimer, and tetramer) provide insights into mechanisms of site recognition, half-the-sites activity, strand cleavage order, and concerted strand cleavageSelectivity of loxP sites arises from few base-specific contacts made by each protomer and is mainly driven by formation of phosphate contacts and DNA deformations that are maximal in the fully assembled “active” tetramerCis and trans interactions of the β2-3 loop (i) define which sites are “active” and (ii) ensure half-the-sites activityProtein flexibility plays a central role in enabling DNA sequence scanning, recruitment of a second protein to form a dimer, synapsis, control of activity, as well as subsequent recombination stepsConformational sampling within the tetrameric complex was uncovered using 3D variability analysis and revealed the importance of protein-protein interfaces for site- selection and activation of Cre-loxP complexes

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conquer by cryo-EM without physically dividing;Biochemical Society Transactions;2021-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3