Cardiac-generated sympathetic stress alters heart-brain communication, reduces EEG-theta activity, and increases locomotor behavior

Author:

Agrimi Jacopo,Menicucci Danilo,Laurino Marco,Mackey Chelsea D,Hasnain Laila,Dodaballapur Sneha,McDevitt Ross A,Hoover Donald B,Gemignani Angelo,Paolocci Nazareno,Lakatta Edward G

Abstract

AbstractBrain modulation of myocardial activity via the autonomic nervous system is increasingly well characterized. Conversely, how primary alterations in cardiac function, such as an intrinsic increase in heart rate or contractility, reverberate on brain signaling/adaptive behaviors - in a bottom-up modality - remains largely unclear. Mice with cardiac-selective overexpression of adenylyl cyclase type 8 (TGAC8) display increased heart rate and reduced heart rhythm complexity associated with a nearly abolished response to external sympathetic inputs. Here, we tested whether chronically elevated intrinsic cardiac performance alters the heart-brain informational flow, affecting brain signaling and, thus, behavior. To this end, we employed dual lead telemetry for simultaneous recording of EEG and EKG time series in awake, freely behaving TGAC8 mice and wild-type (WT) littermates. We recorded EEG and EKG signals, while monitoring mouse behavior with established tests. Using heart rate variability (HRV) in vivo and isolated atria response to sympathomimetic agents, we first confirmed that the TGAC8 murine heart evades autonomic control. The EEG analysis revealed a substantial drop in theta-2 (4-7 Hz) activity in these transgenic mice. Next, we traced the informational flow between EKG and EEG in the theta-2 frequency band via the Granger causality statistical approach and we found a substantial decrement in the extent of heart/brain bidirectional communication. Finally, TGAC8 mice displayed heightened locomotor activity in terms of behavior, with higher total time mobile, distance traveled, and movement speed while freezing behavior was reduced. Increased locomotion correlated negatively with theta-2 waves count and amplitude. Our study shows that cardiac-born persistent sympathetic stress disrupts the information flow between the heart and brain while influencing central physiological patterns, such as theta activity that controls locomotion. Thus, cardiac-initiated disorders, such as persistently elevated cardiac performance that escapes autonomic control, are penetrant enough to alter brain functions and, thus, primary adaptive behavioral responses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3