Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous

Author:

Ghezelayagh AvaORCID,Harrington Richard C.ORCID,Burress Edward D.ORCID,Campbell Matthew A.ORCID,Buckner Janet C.ORCID,Chakrabarty ProsantaORCID,Glass Jessica R.ORCID,Tyler McCraney W.,Unmack Peter J.ORCID,Thacker Christine E.ORCID,Alfaro Michael E.ORCID,Friedman Sarah T.ORCID,Ludt William B.ORCID,Cowman Peter F.ORCID,Friedman MattORCID,Price Samantha A.,Dornburg AlexORCID,Faircloth Brant C.,Wainwright Peter C.ORCID,Near Thomas J.ORCID

Abstract

AbstractSpiny-rayed fishes (Acanthomorpha) dominate modern marine habitats and comprise more than a quarter of all living vertebrate species1–3. It is believed that this dominance resulted from explosive lineage and phenotypic diversification coincident with the Cretaceous-Paleogene (K-Pg) mass-extinction event4. It remains unclear, however, if living acanthomorph diversity is the result of a punctuated burst or gradual accumulation of diversity following the K-Pg. We assess these hypotheses with a time-calibrated phylogeny inferred using ultraconserved elements from a sampling of species that represent over 91% of all acanthomorph families, as well as an extensive body shape dataset of extant species. Our results indicate that several million years after the end-Cretaceous, acanthomorphs underwent a prolonged and significant expansion of morphological disparity primarily driven by changes in body elongation, and that acanthomorph lineages containing the bulk of the living species diversity originated throughout the Cenozoic. These acanthomorph lineages radiated into distinct regions of morphospace and retained their iconic phenotypes, including a large group of laterally compressed reef fishes, fast-swimming open-ocean predators, bottom-dwelling flatfishes, seahorses, and pufferfishes. The evolutionary success of spiny-rayed fishes is the culmination of a post K-Pg adaptive radiation in which rates of lineage diversification were decoupled from periods of high phenotypic disparity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3