Abstract
AbstractSpiny-rayed fishes (Acanthomorpha) dominate modern marine habitats and comprise more than a quarter of all living vertebrate species1–3. It is believed that this dominance resulted from explosive lineage and phenotypic diversification coincident with the Cretaceous-Paleogene (K-Pg) mass-extinction event4. It remains unclear, however, if living acanthomorph diversity is the result of a punctuated burst or gradual accumulation of diversity following the K-Pg. We assess these hypotheses with a time-calibrated phylogeny inferred using ultraconserved elements from a sampling of species that represent over 91% of all acanthomorph families, as well as an extensive body shape dataset of extant species. Our results indicate that several million years after the end-Cretaceous, acanthomorphs underwent a prolonged and significant expansion of morphological disparity primarily driven by changes in body elongation, and that acanthomorph lineages containing the bulk of the living species diversity originated throughout the Cenozoic. These acanthomorph lineages radiated into distinct regions of morphospace and retained their iconic phenotypes, including a large group of laterally compressed reef fishes, fast-swimming open-ocean predators, bottom-dwelling flatfishes, seahorses, and pufferfishes. The evolutionary success of spiny-rayed fishes is the culmination of a post K-Pg adaptive radiation in which rates of lineage diversification were decoupled from periods of high phenotypic disparity.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献