Author:
Mayfield Joshua E.,Pollak Adam J.,Worby Carolyn A.,Xu Joy C.,Tandon Vasudha,Newton Alexandra C.,Dixon Jack E.
Abstract
AbstractEndoplasmic/sarcoplasmic reticulum Ca2+ stores are essential to myriad cellular processes, however, the structure of these stores is largely unknown and existing models neither explain observations made in vivo nor sufficiently account for physiological data. We investigate CASQ1 - the major Ca2+ binding protein of skeletal muscle – and discover Ca2+-dependent liquid-liquid phase separation activity. The intrinsic disorder of CASQ1 underlies this activity and is regulated via phosphorylation by the secretory pathway kinase FAM20C. This novel divalent cation driven condensation demonstrates liquid-liquid phase separation occurs within the endoplasmic/sarcoplasmic reticulum, mechanistically explains efficient Ca2+ buffering and storage, and represents a largely unexplored mechanism of divalent-cation driven protein association.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献