Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes)

Author:

Černý DavidORCID,Natale Rossy

Abstract

AbstractShorebirds (Charadriiformes) are a globally distributed clade of modern birds and, due to their ecological and morphological disparity, a frequent subject of comparative studies. While molecular phylogenies have been instrumental to resolving the suprafamilial backbone of the charadriiform tree, several higher-level relationships, including the monophyly of plovers (Charadriidae) and the phylogenetic positions of several monotypic families, have remained unclear. The timescale of shorebird evolution also remains uncertain as a result of extensive disagreements among the published divergence dating studies, stemming largely from different choices of fossil calibrations. Here, we present the most comprehensive non-supertree phylogeny of shorebirds to date, based on a total-evidence dataset comprising 336 ingroup taxa (89% of all extant species), 24 loci (15 mitochondrial and 9 nuclear), and 69 morphological characters. Using this phylogeny, we clarify the charadriiform evolutionary timeline by conducting a node-dating analysis based on a subset of 8 loci tested to be clock-like and 16 carefully selected, updated, and vetted fossil calibrations. Our concatenated, species-tree, and total-evidence analyses consistently support plover monophyly and are generally congruent with the topologies of previous studies, suggesting that the higher-level relationships among shorebirds are largely settled. However, several localized conflicts highlight areas of persistent uncertainty within the gulls (Laridae), true auks (Alcinae), and sandpipers (Scolopacidae). At shallower levels, our phylogenies reveal instances of genus-level nonmonophyly that suggest changes to currently accepted taxonomies. Our node-dating analyses consistently support a mid-Paleocene origin for the Charadriiformes and an early diversification for most major subclades. However, age estimates for more recent divergences vary between different relaxed clock models, and we demonstrate that this variation can affect phylogeny-based macroevolutionary studies. Our findings demonstrate the impact of fossil calibration choice on the resulting divergence time estimates, and the sensitivity of diversification rate analyses to the modeling assumptions made in time tree inference.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3