Bayesian Inference of Joint Coalescence Times for Sampled Sequences

Author:

Simon HelmutORCID,Huttley GavinORCID

Abstract

ABSTRACTThe site frequency spectrum (SFS) is a commonly used statistic to summarize genetic variation in a sample of genomic sequences from a population. Such a genomic sample is associated with an imputed genealogical history with attributes such as branch lengths, coalescence times and the time to the most recent common ancestor (TMRCA) as well as topological and combinatorial properties. We present a Bayesian model for sampling from the joint posterior distribution of coalescence times conditional on the SFS associated with a sample of sequences in the absence of selection. In this model, the combinatorial properties of a genealogy, which is represented as a coalescent tree, are expressed as matrices. This facilitates the calculation of likelihoods and the effective sampling of the entire space of tree structures according to the Equal Rates Markov (or Yule-type) measure. Unlike previous methods, assumptions as to the type of stochastic process that generated the genealogical tree are not required. Novel approaches to defining both uninformative and informative prior distributions are employed. The uncertainty in inference due to the stochastic nature of mutation and the unknown tree structure is expressed by the shape of the posterior distributions. The method is implemented using the general purpose Markov Chain Monte Carlo software PyMC3. From the sampled posterior distribution of coalescence times, one can also infer related quantities such as the number of ancestors of a sample at a given time in the past (ancestral distribution) and the probability of specific relationships between branch lengths (for example, that the most recent branch is longer than all the others). The performance of the method is evaluated against simulated data and is also applied to historic mitochondrial data from the Nuu-Chah-Nulth people of North America. The method can be used to obtain estimates of the TMRCA of the sample. The relationship of these estimates to those given by “Thomson’s estimator” is explored.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. The statistical analysis of compositional data;Journal of the Royal Statistical Society. Series B (Methodological),1982

2. Al-Rfou, R. , Alain, G. , Almahairi, A. , Angermueller, C. , Bahdanau, D. , Ballas, N. , Bastien, F. , Bayer, J. , Belikov, A. , Belopolsky, A. , et al. (2016). Theano: A python framework for fast computation of mathematical expressions. arXiv e-prints, pages arXiv–1605.

3. Next generation sequencing of pooled samples: guideline for variants’ filtering;Scientific Reports,2016

4. Descartes’ rule of signs and the identifiability of population demographic models from genomic variation data;Annals of Statistics,2014

5. Devroye, L. (1986). Non-uniform random variate generation. Springer-Verlag, New York.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3