Abstract
ABSTRACTHuman Nogo-66 receptor 1 (NgR1) is a receptor for mammalian orthoreoviruses (reoviruses), but the mechanism of virus-receptor engagement is unknown. NgR1 binds a variety of structurally dissimilar ligands in the adult central nervous system (CNS) to inhibit axon outgrowth. Disruption of ligand binding to NgR1 and subsequent signaling can improve neuron regrowth, making NgR1 an important therapeutic target for diverse conditions such as spinal crush injuries and Alzheimer disease. To elucidate how NgR1 mediates cell binding and entry of reovirus, we defined the affinity of interaction between virus and receptor, determined the structure of the virus-receptor complex, and identified residues in the receptor required for virus binding and infection. These studies revealed that NgR1 sequences in a central concave region of the molecule establish a bridge between two copies of the viral capsid protein, σ3. This unusual binding interface produces high-avidity interactions between virus and receptor and likely primes early entry steps. NgR1 sequences engaged by reovirus also are required for NgR1 binding to ligands expressed by neurons and oligodendrocytes. These studies redefine models of reovirus cell-attachment and highlight the evolution of viruses to engage multiple receptors using distinct capsid components.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献