Tracing the evolution of human gene regulation and its association with shifts in environment

Author:

Colbran Laura L.ORCID,Johnson Maya R.,Mathieson Iain,Capra John A.ORCID

Abstract

AbstractAs humans spread throughout the world, they adapted to variation in many environmental factors, including climate, diet, and pathogens. Because many of these adaptations were likely mediated by multiple non-coding variants with small effects on gene regulation, it has been difficult to link genomic signals of selection to specific genes, and to describe the regulatory response to selection. To overcome this challenge, we adapted PrediXcan, a machine learning method for imputing gene regulation from genotype data, to analyze low-coverage ancient human DNA (aDNA). First, we used simulated genomes to benchmark strategies for adapting gene regulatory prediction to increase robustness to incomplete aDNA data. Applying the resulting models to 490 ancient Eurasians, we found that genes with the strongest divergent regulation among ancient populations with hunter-gatherer, pastoralist, and agricultural lifestyles are enriched for metabolic and immune functions. Next, we explored the contribution of divergent gene regulation to two traits with strong evidence of recent adaptation: dietary metabolism and skin pigmentation. We found enrichment for divergent regulation among genes previously proposed to be involved in diet-related local adaptation, and in many cases, the predicted effects on regulation provide explanations for previously observed signals of selection, e.g., at FADS1, GPX1, and LEPR. For skin pigmentation, we applied new models trained in melanocytes to a time series of 2999 ancient Europeans spanning ~38,000 years BP. In contrast to diet, skin pigmentation genes show little regulatory change over time, suggesting that adaptation mainly involved large-effect coding variants. This work demonstrates how aDNA can be combined with present-day genomes to shed light on the biological differences among ancient populations, the role of gene regulation in adaptation, and the relationship between ancient genetic diversity and the present-day distribution of complex traits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3