Author:
Dhanabalan Kaamini M.,Dravid Ameya A.,Agarwal Smriti,Sharath Ramanath K.,Padmanabhan Ashok K.,Agarwal Rachit
Abstract
AbstractTrauma to the knee joint is associated with significant cartilage degeneration and erosion of subchondral bone, which eventually leads to osteoarthritis (OA), resulting in substantial morbidity and healthcare burden. With no disease-modifying drugs in clinics, the current standard of care focuses on symptomatic relief and viscosupplementation. Modulation of autophagy and targeting senescence pathways are emerging as potential treatment strategies. Rapamycin has shown promise in OA disease amelioration by autophagy upregulation, yet its clinical use is hindered by difficulties in achieving therapeutic concentrations, necessitating multiple weekly injections. Here, we have synthesized rapamycin - loaded poly (lactic-co-glycolic acid) microparticles (RMPs) that induced autophagy, prevented senescence and sustained sulphated glycosaminoglycans(sGAG) production in primary human articular chondrocytes from OA patients. RMPs were potent, nontoxic, and exhibited high retention time (up to 35 days) in mice joints. Intra-articular delivery of RMPs effectively mitigated cartilage damage and inflammation in surgery-induced OA when administered as a prophylactic or therapeutic regimen. Together, our studies demonstrate the feasibility of using RMPs as a potential clinically translatable therapy to prevent and treat post-traumatic osteoarthritis.Graphical Abstract
Publisher
Cold Spring Harbor Laboratory