Low-coverage sequencing in a deep intercross of the Virginia body weight lines provides insight to the polygenic genetic architecture of growth: novel loci revealed by increased power and improved genome-coverage

Author:

Rönneburg T.ORCID,Zan Y.ORCID,Honaker C.F.,Siegel P.B.,Carlborg Ö.ORCID

Abstract

AbstractGenetic dissection of highly polygenic traits is a challenge, in part due to the power necessary to confidently identify loci with minor effects. Experimental crosses are valuable resources for mapping such traits. Traditionally, genome-wide analyses of experimental crosses have targeted major loci using data from a single generation, often the F2, with additional, later generation individuals being generated for replication and fine-mapping. Here, we aim to confidently identify minor-effect loci contributing to the highly polygenic basis of the long-term, divergent bi-directional selection responses for 56-day body weight in the Virginia chicken lines. To achieve this, a powerful strategy was developed to make use of data from all generations (F2-F18) of an advanced intercross line, developed by crossing the low and high selected lines after 40 generations of selection. A cost-efficient low-coverage sequencing based approach was used to obtain high-confidence genotypes in 1Mb bins across 99.3% of the chicken genome for >3,300 intercross individuals. In total, 12 genome-wide significant and 10 additional suggestive QTL for 56-day body weight were mapped, with only two of these QTL reaching genome-wide, and one suggestive, significance in analyses of the F2 generation. Five of the significant, and four of the suggestive, QTL were among the 20 loci reaching a 20% FDR-threshold in previous analyses of data from generation F15. The novel, minor-effect QTL mapped here were generally mapped due to an overall increase in power by integrating data across generations, with minor contributions from increased genome-coverage and improved marker information content. Significant and suggestive QTL now explain >60% of the difference between the parental lines, three times more than the previously reported significant QTL. Making integrated use of all available samples from multiple generations in experimental crosses is now economically feasible using the low-cost, sequencing-based genotyping strategies outlined here. Our empirical results illustrate the value of this strategy for mapping novel minor-effect loci contributing to complex traits to provide a more confident, comprehensive view of the individual loci that form the genetic basis of the highly polygenic, long-term selection responses for 56-day body weight in the Virginia chicken lines.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3