Evolution of a confluent gut epithelium under cyclic stretching

Author:

Gérémie Lauriane,Ilker Efe,Bernheim-Dennery Moencopi,Cavaniol Charles,Viovy Jean-Louis,Vignjevic Danijela Matic,Joanny Jean-François,Descroix Stéphanie

Abstract

The progress of food in the gastrointestinal (GI) tract is driven by a peristaltic motion generated by the muscle belt surrounding the GI tract. In turn, the response of the intestinal epithelial cells to the peristaltic stresses affects the dynamics of the epithelial structure. In this work, we study the effect of cyclic stretching (0.125 Hz, 10% strain) on the spatial organization of the intestinal epithelium using intestinal cells deposited on a flat elastomeric substrate to mimic the peristaltic motion in vitro. A confluent monolayer of Caco-2 cells is grown on a PDMS chip to probe the morphological and orientational response of the tissue to cyclic stretching. The PDMS chips are either covalently or non-covalently coated with laminin to recapitulate the basement membrane. We observe a significant orientational response where the cells rearrange their long axes perpendicular to the stretching direction for both coating conditions. The experiment is modeled by a vertex model where the cells store elastic energy with varying strain and effectively have a rotational diffusive motion through rearrangements of their shapes. The model also predicts a transition between the perpendicular orientation and orientation at an oblique angle determined by the level of the cell elastic anisotropy. It provides a general framework to study cell response and relaxation dynamics under cyclic stretching across different cell types. We also discuss potential relevance of peristalsis in determining planar cell polarity in 3D architectures.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3