Nuclear-cytoplasmic compartmentalization promotes robust timing of mitotic events by cyclin B1-Cdk1

Author:

Maryu Gembu,Yang QiongORCID

Abstract

SummaryStudies applying well-mixed cytosolic extracts found the mitotic network centered on cyclin-dependent kinase (Cdk1) performs robust relaxation oscillations with tunable frequency [1–6]. However, recent work also highlighted the importance of cyclin B1-Cdk1 nuclear translocation in mitotic timing [7, 8]. How nuclear compartmentalization affects the oscillator properties and the accurate ordering of mitotic events, especially in embryos lacking checkpoints, remains elusive. Here we developed a Förster resonance energy transfer (FRET) biosensor for analyzing Cdk1 spatiotemporal dynamics in synthetic cells containing nuclei compared to those without. We found cellular compartmentalization significantly impacts clock behaviors. While the amplitude-frequency dependency measured in the homogeneous cytoplasm showed highly tunable frequency for a fixed amplitude, confirming predictions by non-spatial models [4], the frequency remains constant against cyclin variations when nuclei are present, suggesting a possible buffering mechanism of nuclear compartments to ensure robust timing. We also found all cyclin degrades within similar mitotic durations despite variable interphase cyclin expression. This scalable degradation of cyclin may further promote the precise mitotic duration. Simultaneous measurements revealed Cdk1 and cyclin B1 cycle rigorously out of phase, producing a wide orbit on their phase plane, essential for robust oscillations. We further mapped mitotic events on the phase-plane orbits. Unlike cytoplasmic-only cells showing delayed Cdk1 activation, nucleus-containing cells exhibit steady cyclin B1-Cdk1 nuclear accumulation until nuclear envelope breakdown (NEB) followed by an abrupt cyclin-independent activation to trigger anaphase. Thus, both biphasic activation and subcellular localization of Cdk1 ensure accurate ordering of substrates.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3