Pfam domain adaptation profiles reflect plant species’ evolutionary history

Author:

Jensen Sarah E.ORCID,Buckler Edward S.ORCID

Abstract

AbstractThe increase in global temperatures predicted by climate change models presents a serious problem for agriculture because high temperatures reduce crop yields. Protein biochemistry is at the core of plant heat stress response, and understanding the interactions between protein biochemistry and temperature will be key to developing heat-tolerant crop varieties. Current experimental studies of proteome-wide plant thermostability are limited by the complexity of plant proteomes: evaluating function for thousands of proteins across a variety of temperatures is simply not feasible with existing technologies. In this paper, we use homologous prokaryote sequences to predict plant Pfam temperature adaptation and gain insights into how thermostability varies across the proteome for three species: maize, Arabidopsis, and poplar. We find that patterns of Pfam domain adaptation across organelles are consistent and highly significant between species, with cytosolic proteins having the largest range of predicted Pfam stabilities and a long tail of highly-stable ribosomal proteins. Pfam adaptation in leaf and root organs varies between species, and maize root proteins have more low-temperature Pfam domains than do Arabidopsis or poplar root proteins. Both poplar and maize populations have an excess of low-temperature mutations in Pfam domains, but only the mutations identified in poplar accessions have a negative effect on Pfam temperature adaptation overall. These Pfam domain adaptation profiles provide insight into how different plant structures adapt to their surrounding environment and can help inform breeding or protein editing strategies to produce heat-tolerant crops.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3