Author:
Dedukh D.,Marta A.,Janko K.
Abstract
AbstractThe transition from sexual reproduction to asexuality is often triggered by hybridization. The gametogenesis of many hybrid asexuals involves a stage of premeiotic genomic endoreduplication leading to the production of clonal gametes and bypassing genomic incompatibilities that would normally cause hybrid sterility. However, it is still not clear at what gametogenic stage the endoreplication occurs, how many gonial cells it affects and whether its rate differs among clonal lineages. Here, we investigated meiotic and premeiotic cells of diploid and triploid hybrids of spined loaches (Cypriniformes: Cobitis) that reproduce by gynogenesis. We found that naturally as well as experimentally produced F1 hybrid strains undergo an obligatory genome duplication event to achieve asexuality, occurring in the gonocytes just before entering meiosis or, rarely, one or few divisions before meiosis. Surprisingly however, the genome endoreplication was observed only in a minor fraction of the hybrid’s gonocytes, while the vast majority were unable to duplicate their genomes and consequently could not proceed beyond pachytene due to defects in pairing and bivalent formation. We also noted that the rate of endoreplication was significantly higher among gonocytes of hybrids from successful natural clones than of experimentally produced F1 hybrids, indicating that interclonal selection may favour lineages which maximize the rate of premeiotic endoreduplication. We conclude that asexuality and hybrid sterility are intimately related phenomena and the transition from sexual reproduction to asexuality must overcome significant problems with genome incompatibilities with possible impact on reproductive potential.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献