Generating and testing hypotheses about the fossil record of insect herbivory with a theoretical ecospace

Author:

Schachat Sandra R.ORCID,Payne Jonathan L.ORCID,Boyce C. Kevin,Labandeira Conrad C.ORCID

Abstract

AbstractA typical fossil flora examined for insect herbivory contains a few hundred leaves and a dozen or two insect damage types. Paleontologists employ a wide variety of metrics to assess differences in herbivory among assemblages: damage type diversity, intensity (the proportion of leaves, or of leaf surface area, with insect damage), the evenness of diversity, and comparisons of the evenness and diversity of the flora to the evenness and diversity of damage types. Although the number of metrics calculated is quite large, given the amount of data that is usually available, the study of insect herbivory in the fossil record still lacks a quantitative framework that can be used to distinguish among different causes of increased insect herbivory and to generate null hypotheses of the magnitude of changes in insect herbivory over time. Moreover, estimates of damage type diversity, the most common metric, are generated with inconsistent sampling standardization routines. Here we demonstrate that coverage-based rarefaction yields valid, reliable estimates of damage type diversity that are robust to differences among floral assemblages in the number of leaves examined, average leaf surface area, and the inclusion of plant organs other than leaves such as seeds and axes. We outline the potential of a theoretical ecospace that combines various metrics to distinguish between potential causes of increased herbivory. We close with a discussion of the most appropriate uses of a theoretical ecospace for insect herbivory, with the overlapping damage type diversities of Paleozoic gymnosperms and Cenozoic angiosperms as a brief case study.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3