Reviewing the consequences of genetic purging on the success of rescue programs

Author:

Pérez-Pereira NoeliaORCID,Caballero ArmandoORCID,García-Dorado AuroraORCID

Abstract

AbstractGenetic rescue is increasingly considered a promising and underused conservation strategy to reduce inbreeding depression and restore genetic diversity in endangered populations, but the empirical evidence supporting its application is limited to a few generations. Here we discuss on the light of theory the role of inbreeding depression arising from partially recessive deleterious mutations and of genetic purging as main determinants of the medium to long-term success of rescue programs. This role depends on two main predictions: (1) The inbreeding load hidden in populations with a long stable demography increases with the effective population size; and (2) After a population shrinks, purging tends to remove its (partially) recessive deleterious alleles, a process that is slower but more efficient for large populations than for small ones. We also carry out computer simulations to investigate the impact of genetic purging on the medium to long term success of genetic rescue programs. For some scenarios, it is found that hybrid vigor followed by purging will lead to sustained successful rescue. However, there may be specific situations where the recipient population is so small that it cannot purge the inbreeding load introduced by migrants, which would lead to increased fitness inbreeding depression and extinction risk in the medium to long term. In such cases, the risk is expected to be higher if migrants came from a large non-purged population with high inbreeding load, particularly after the accumulation of the stochastic effects ascribed to repeated occasional migration events. Therefore, under the specific deleterious recessive mutation model considered, we conclude that additional caution should be taken in rescue programs. Unless the endangered population harbors some distinctive genetic singularity whose conservation is a main concern, restoration by continuous stable gene flow should be considered, whenever feasible, as it reduces the extinction risk compared to repeated occasional migration and can also allow recolonization events.

Publisher

Cold Spring Harbor Laboratory

Reference108 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3