Author:
De Saikat,Mamidi Prabhudutta,Ghosh Soumyajit,Keshry Supriya Suman,Mahish Chandan,Pani Sweta Smita,Laha Eshna,Ray Amrita,Datey Ankita,Chatterjee Sanchari,Singh Sharad,Mukherjee Tathagata,Khamaru Somlata,Chattopadhyay Subhasis,Subudhi Bharat Bhusan,Chattopadhyay Soma
Abstract
ABSTRACTChikungunya virus (CHIKV) has re-emerged as a global public health threat. The inflammatory pathways of RAS and PPAR-γ are usually involved in viral infections. Thus, Telmisartan (TM) with known capacity to block AT1 receptor and activate PPAR-γ, was investigated against CHIKV. The anti-CHIKV effect of TM was investigated in vitro (Vero, RAW 264.7 cells and hPBMCs) and in vivo (C57BL/6 mice). TM was found to abrogate CHIKV infection efficiently (IC50 of 15.34-20.89µM in the Vero and RAW 264.7 cells respectively). Viral RNA and proteins were reduced remarkably with the TM driven modulation of host m-TOR signaling. Additionally, TM interfered in the early and late stages of CHIKV life cycle with efficacy in both pre and post-treatment assay. Moreover, the agonist of AT1 receptor and antagonist of PPAR-γ increased CHIKV infection suggesting TM’s anti-viral potential by modulating host factors. Besides, reduced activation of all major MAPKs, NF-κB (p65) and cytokines by TM through the inflammatory axis supported the fact that the anti-CHIKV efficacy of TM is partly mediated through the AT1/PPAR-γ/MAPKs pathways. Interestingly, at the human equivalent dose, TM abrogated CHIKV infection and inflammation significantly leading to reduced clinical score and complete survival of C57BL/6 mice. Additionally, TM reduced infection in hPBMC derived monocyte-macrophage populations in vitro. Hence, TM was found to reduce CHIKV infection by targeting both viral and host factors. Considering its safety and in vivo efficacy, it can be a suitable candidate in future for repurposing against CHIKV.
Publisher
Cold Spring Harbor Laboratory