Abstract
ABSTRACTThe few established causal genes in Alzheimer’s disease (AD), mutations in APP and PSENs, have been functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease’s initial preclinical phase. SORL1, a gene encoding the endosome recycling receptor SORLA, epidemiologically behaves as a causal gene when truncating mutations lead to partial loss of protein function. Here, in an effort to test whether SORL1 can indeed function as an AD causal gene, we used CRISPR-Cas9-based gene editing to develop a novel model of SORL1 haploinsufficiency in Göttingen Minipigs taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young minipigs was found to phenocopy the preclinical in vivo profile of AD observed with other causal genes, resulting in spinal fluid abnormalities in Aβ and tau, with no evident neurodegeneration or amyloid plaque formation. These studies provide functional support that SORL1 is a bona fide causal gene in AD, and when taken together with recent insight on other AD-causal genes, support the idea that dysfunctional endosomal recycling is a dominant pathogenic pathway in the disease.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献