Predicting stable binding modes from simulated dimers of the D76N mutant of β2-microglobulin

Author:

Oliveira Nuno F. B.,Rodrigues Filipe E. P.,Vitorino João N. M.,Loureiro Rui J. S.,Faísca Patrícia F. N.ORCID,Machuqueiro Miguel

Abstract

AbstractThe D76N mutant of the β2m protein is a biologically motivated model system to study protein aggregation. There is strong experimental evidence, supported by molecular simulations, that D76N populates a highly dynamic conformation (which we originally named I2) that exposes aggregation-prone patches as a result of the detachment of the two terminal regions. Here, we use Molecular Dynamics simulations to study the stability of an ensemble of dimers of I2 generated via protein-protein docking. MM-PBSA calculations indicate that within the ensemble of investigated dimers the major contribution to interface stabilization at physiological pH comes from hydrophobic interactions between apolar residues. Our structural analysis also reveals that the interfacial region associated with the most stable binding modes are particularly rich in residues pertaining to both the N- and C-terminus, as well residues from the BC- and DE-loops. On the other hand, the less stable interfaces are stabilized by intermolecular interactions involving residues from the CD- and EF-loops. By focusing on the most stable binding modes, we used a simple geometric rule to propagate the corresponding dimer interfaces. We found that, in the absence of any kind of structural rearrangement occurring at an early stage of the oligomerization pathway, some interfaces drive a self-limited growth process, while others can be propagated indefinitely allowing the formation of long, polymerized chains. In particular, the interfacial region of the most stable binding mode reported here falls in the class of self-limited growth.Graphical AbstractHighlightsThe D76N mutant of protein β2m populates an aggregation-prone monomer (I2) with unstructured terminal regionsMolecular Dynamics simulations and MM-PBSA calculations indicate that dimers of I2 are stabilized by hydrophobic interactionsThe N- and C-terminal regions, together with the BC- and DE-loops are prevalent in the most stable dimer interfaces, while the CD- and EF-loop appear in the less stable onesThe most stable dimer interface has a limited potential to oligomerize in the absence of structural rearrangement

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3