Inferring viral occurrence patterns through a synthetic data simulation

Author:

Pimenoff Ville N.ORCID,Cleries RamonORCID

Abstract

AbstractViruses infecting humans are manifold and several of them provoke significant morbidity and mortality. Simulations creating large synthetic datasets from observed multiple viral strain infections in a limited population sample can be a powerful tool to infer significant pathogen occurrence and interaction patterns, particularly if limited number of observed data units is available. Here, to demonstrate diverse human papillomavirus (HPV) strain occurrence patterns, we used log-linear models combined with Bayesian framework for graphical independence network (GIN) analysis. That is, to simulate datasets based on modeling the probabilistic associations between observed viral data points, i.e different viral strain infections in a set of population samples. Our GIN analysis outperformed in precision all oversampling methods tested for simulating large synthetic viral strain-level prevalence dataset from observed set of HPVs data. Altogether, we demonstrate that network modeling is a potent tool for creating synthetic viral datasets for comprehensive pathogen occurrence and interaction pattern estimations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3