Using Bayesian Inference to Estimate Plausible Muscle Forces in Musculoskeletal Models

Author:

Johnson Russell T.ORCID,Lakeland Daniel,Finley James M.ORCID

Abstract

AbstractBackgroundMusculoskeletal modeling is currently a preferred method for estimating the muscle forces that underlie observed movements. However, these estimates are sensitive to a variety of assumptions and uncertainties, which creates difficulty when trying to interpret the muscle forces from musculoskeletal simulations. Here, we describe an approach that uses Bayesian inference to identify plausible ranges of muscle forces for a simple motion while representing uncertainty in the measurement of the motion and the objective function used to solve the muscle redundancy problem.MethodsWe generated a reference elbow flexion-extension motion by simulating a set of muscle excitation signals derived from the computed muscle control tool built into OpenSim. We then used a Markov Chain Monte Carlo (MCMC) algorithm to sample from a posterior probability distribution of muscle excitations that would result in the reference elbow motion trajectory. We constructed a prior over the excitation parameters which down-weighted regions of the parameter space with greater muscle excitations. We used muscle excitations to find the corresponding kinematics using OpenSim, where the error in position and velocity trajectories (likelihood function) was combined with the sum of the cubed muscle excitations integrated over time (prior function) to compute the posterior probability density.ResultsWe evaluated the muscle forces that resulted from the set of excitations that were visited in the MCMC chain (five parallel chains, 450,000 iterations per chain, runtime = 71 hours). The estimated muscle forces compared favorably with the reference motion from computed muscle control, while the elbow angle and velocity from MCMC matched closely with the reference with an average RMSE for angle and velocity equal to 0.008° and 0.18°/s, respectively. However, our rank plot analysis and potential scale reduction statistics, which we used to evaluate convergence of the algorithm, indicated that the parallel chains did not fully mix.ConclusionsWhile the results from this process are a promising step towards characterizing uncertainty in muscle force estimation, the computational time required to search the solution space with, and the lack of MCMC convergence indicates that further developments in MCMC algorithms are necessary for this process to become feasible for larger-scale models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3