Scanning mutagenesis of RNA-binding protein ProQ reveals a quality control role for the Lon protease

Author:

Mouali Youssef El,Ponath Falk,Scharrer Vinzent,Wenner Nicolas,Hinton Jay C. D.,Vogel Jörg

Abstract

ABSTRACTThe FinO-domain protein ProQ belongs to a widespread family of RNA-binding proteins (RBPs) involved in gene regulation in bacterial chromosomes and mobile elements. Whilst the cellular RNA targets of ProQ have been established in diverse bacteria, the functionally crucial ProQ residues remain to be identified under physiological conditions. Following our discovery that ProQ deficiency alleviates growth suppression of Salmonella with succinate as the sole carbon source, an experimental evolution approach was devised to exploit this phenotype. By coupling mutational scanning with loss-of-function selection, we identified multiple ProQ residues in both the N-terminal FinO domain and the variable C-terminal region required for ProQ activity. Two C-terminal mutations abrogated ProQ function and mildly impaired binding of a model RNA target. By contrast, several mutations in the FinO domain rendered ProQ both functionally inactive and unable to interact with target RNA in vivo. Alteration of the FinO domain stimulated the rapid turnover of ProQ by Lon-mediated proteolysis, suggesting a quality control mechanism that prevents the accumulation of non-functional ProQ molecules. We extend this observation to Hfq, the other major sRNA chaperone of enteric bacteria. The Hfq Y55A mutant protein, defective in RNA-binding and oligomerization, proved to be labile and susceptible to degradation by Lon. Taken together, our findings connect the major AAA+ family protease Lon with RNA-dependent quality control of Hfq and ProQ, the two major sRNA chaperones of Gram-negative bacteria.SIGNIFICANCEProteins that interact with RNA play a vital role in controlling key functions in pathogenic bacteria. RNA-binding proteins regulate how, when and where bacteria feed, swim or interact with a host, and it is critical that we understand how RNAs associate with these proteins. ProQ is one of the three major RNA-binding proteins (RBPs) in Gram-negative bacteria. In this study, we mapped the amino acid residues of ProQ that are essential for function. We successfully identified residue substitutions that rendered the ProQ RBP both non-functional and unable to interact with RNA. Our findings raise the possibility that the Lon protease mediates a quality control mechanism of ProQ that targets this RBP in the absence of RNA. A posttranslational quality control mechanism of this type could prevent the accumulation of nonfunctional RBPs in the bacterial cytoplasm.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3