KSTAR: An algorithm to predict patient-specific kinase activities from phosphoproteomic data

Author:

Crowl Sam,Jordan Benjamin,Ahmed Hamza,Ma Cynthia,Naegle Kristen M.ORCID

Abstract

AbstractKinase inhibitors are one of the largest classes of FDA-approved drugs and are major targets in oncology. Although kinase inhibitors have played an important role in improving cancer outcomes, major challenges still exist, including the development of resistance and failure to respond to treatments. Improvements for tumor profiling of kinase activity would be an important step in improving treatment outcomes and identifying effective kinase targets. Here, we present a graph- and statistics-based algorithm, called KSTAR, which harnesses the phosphoproteomic profiling of human cells and tissues by predicting kinase activity profiles from the observed phosphorylation of kinase substrates. The algorithm is based on the hypothesis that the more active a kinase is, the more of its substrates will be observed in a phosphoproteomic experiment. This method is error- and bias-aware in its approach, overcoming challenges presented by the variability of phosphoproteomic pipelines, limited information about kinase-substrate relationships, and limitations of global kinase-substrate predictions, such as training set bias and high overlap between predicted kinase networks. We demonstrate that the predicted kinase activities: 1) reproduce physiologically-relevant expectations and generates novel hypotheses within cell-specific experiments, 2) improve the ability to compare phosphoproteomic samples on the same tissues from different labs, and 3) identify tissue-specific kinase profiles. Finally, we apply the approach to complex human tissue biopsies in breast cancer, where we find that KSTAR activity predictions complement current clinical standards for identifying HER2-status – KSTAR can identify clinical false positives, patients who will fail to respond to inhibitor therapy, and clinically defined HER2-negative patients that might benefit from HER2-targeted therapy. KSTAR will be useful for both basic biological understanding of signaling networks and for improving clinical outcomes through improved clinical trial design, identification of new and/or combination therapies, and for identifying the failure to respond to targeted kinase therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3