Global patterns of subgenome evolution in organelle-targeted genes of six allotetraploid angiosperms

Author:

Sharbrough JoelORCID,Conover Justin L.ORCID,Gyorfy Matheus FernandesORCID,Grover Corrinne E.ORCID,Miller Emma R.ORCID,Wendel Jonathan F.ORCID,Sloan Daniel B.ORCID

Abstract

ABSTRACTWhole-genome duplications (WGDs), in which the number of nuclear genome copies is elevated as a result of autopolyploidy or allopolyploidy, are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes upon cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend upon successful interaction between the 3000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between nuclear and cytoplasmic genes that were inherited from different species. Because cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary “mismatches” between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We tested this hypothesis in maternal vs. paternal copies of organelle-targeted genes in six allotetraploids: Brachypodium hybridum, Chenopodium quinoa, Coffea arabica, Gossypium hirsutum, Nicotiana tabacum, and Triticum dicoccoides. We report evidence that allopolyploid subgenomes exhibit unequal rates of protein-sequence evolution, but we did not observe global effects of cytonuclear incompatibilities on paternal homoeologs of organelle-targeted genes. Analyses of gene content revealed mixed evidence for whether organelle-targeted genes re-diploidize more rapidly than non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.AUTHOR SUMMARYWhole genome duplication, in which the size and content of the nuclear genome is instantly doubled, represents one of the most profound forms of mutational change. The consequences of duplication events are equally monumental, especially considering that almost all eukaryotes have undergone whole genome duplications during their evolutionary history. While myriad genetic, cellular, organismal, and ecological effects of whole genome duplications have been extensively documented, relatively little attention has been paid to the diminutive but essential “other” genomes present inside the cell, those of chloroplasts and mitochondria. In this study, we compared the evolutionary patterns of >340,000 genes from 23 species to test whether whole genome duplications are associated with genetic mismatches between the nuclear, mitochondrial, and chloroplast genomes. We discovered tremendous differences between duplicated copies of nuclear genomes; however, mitochondria-nuclear and chloroplast-nuclear mismatches do not appear to be common following whole genome duplications. Together these genomic data represent the most extensive analysis yet performed on how polyploids maintain the delicate and finely tuned balance between the nuclear, mitochondrial, and chloroplast genomes.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3