Lung Epithelial Regulation of BCL2 Related Protein A1 (BCL2A1) by Coronaviruses (SARS-CoV) and Type I Interferon Signaling

Author:

Ramana Chilakamarti V.ORCID

Abstract

AbstractHighly pathogenic respiratory viruses such as 1918 influenza (HIN1) and coronavirus (SARS-CoV-2) induce significant lung injury with diffuse alveolar damage, capillary leak, and extensive cell death resulting in acute respiratory distress syndrome (ARDS). Direct effects of the virus, as well as host immune response such as proinflammatory cytokine production, contribute to programmed cell death or apoptosis. Alveolar lung epithelial type II (AT2) cells play a major role in the clearance of respiratory viruses, secretion of surfactant proteins and antimicrobial substances into the bronchoalveolar fluid as well as repair of lung injury. Gene expression in AT2 cells is regulated in a tissue and cell-specific manner and in a temporal fashion. The availability of tissue and cell-specific RNA datasets in Human Protein Atlas led to the identification of localized expression patterns of BCL-2 family members such as BCL2 related protein A1 (BCL2A1) in AT2 cells and immune cells of the lung. BCL2A1 expression was regulated by multiple stimuli including Toll-like receptor (TLR) ligands, interferons (IFNs), inflammatory cytokines, and inhibited by the steroid dexamethasone. In this study, regulation of BCL2A1 gene expression in human lung epithelial cells by several respiratory viruses and type I interferon signaling was investigated. SARS-CoV-2 infection significantly induced BCL2A1 expression in human lung epithelial cells within 24 hours that required the expression of Angiotensin-converting enzyme 2 (ACE2). BCL2A1 mRNA induction by SARS-CoV-2 was correlated with the induced expression of IFN-β and IFN-regulated transcription factor mRNA. BCL2A1 was induced by IFN-β treatment or by infection with influenza virus lacking the non-structural protein1(NS1) in NHBE cells. Furthermore, bioinformatics revealed that a subset of BCL-2 family members involved in the control of apoptosis and transcription such as BCL2A1, BCL2L14, BCL3, and BCL6 were regulated in the lung epithelial cells by coronaviruses and in the lung tissue samples of COVID-19 patients. Transcriptomic data also suggested that these genes were differentially regulated by the steroid drug dexamethasone.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3