Caldendrin represses neurite regeneration via a sex-dependent mechanism in sensory neurons

Author:

Lopez Josue A.ORCID,Yamamoto Annamarie,Vecchi Joseph T.ORCID,Hagen Jussara,Lee Amy

Abstract

ABSTRACTCaldendrin is a calmodulin-like Ca2+ binding protein that is expressed primarily in neurons and regulates multiple effectors including Cav1 L-type Ca2+ channels. Here, we tested the hypothesis that caldendrin regulates Cav1-dependent pathways that repress neurite growth in dorsal root ganglion neurons (DRGNs). By immunofluorescence, caldendrin was localized in medium- and large-diameter DRGNs. Consistent with an inhibitory effect of caldendrin on neurite growth, neurite initiation and growth was enhanced in dissociated DRGNs from caldendrin knockout (KO) mice compared to those from wild type (WT) mice. In an in vitro axotomy assay, caldendrin KO DRGNs grew longer neurites via a mechanism that was more sensitive to inhibitors of transcription as compared to WT DRGNs. Strong depolarization, which normally represses neurite growth through activation of Cav1 channels, had no effect on neurite growth in DRGN cultures from female caldendrin KO mice. Remarkably, DRGNs from caldendrin KO males were no different from those of WT males in terms of depolarization-dependent neurite growth repression. We conclude that caldendrin opposes neurite regeneration and growth, and this involves coupling of Cav1 channels to growth-inhibitory pathways in DRGNs of females but not males. Our findings suggest that caldendrin KO mice represent an ideal model in which to interrogate the transcriptional pathways controlling neurite regeneration and how these pathways may differ in males and females.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3