Environmental differences explain subtle yet detectable genetic structure in a widespread pollinator

Author:

Glück MarcelORCID,Geue Julia C.ORCID,Thomassen Henri. A.ORCID

Abstract

AbstractBackgroundThe environment is a strong driver of genetic structure in many natural populations, yet often neglected in population genetic studies. This may be a particular problem in vagile species, where subtle structure cannot be explained by limitations to dispersal. These species might falsely be considered panmictic and hence potentially mismanaged. Here we analysed the genetic structure in an economically important and widespread pollinator, the buff-tailed bumble bee (Bombus terrestris), which is considered to be quasi-panmictic at mainland continental scales. We first quantified population structure in Romania and Bulgaria with spatially implicit Fst and Bayesian clustering analyses. We then incorporated environmental information to infer the influence of the permeability of the habitat matrix between populations (resistance distances) as well as environmental differences among sites in explaining population divergence.ResultsGenetic structure of the buff-tailed bumble bee was subtle and not detected by Bayesian clustering. As expected, geographic distance and habitat permeability were not informative in explaining the spatial pattern of genetic divergence. Yet, environmental variables related to temperature, vegetation and topography were highly informative, explaining between 33 and 39% of the genetic variation observed.ConclusionsWhere in the past spatially implicit approaches had repeatedly failed, incorporating environmental data proved to be highly beneficial in detecting and unravelling the drivers of genetic structure in this vagile and opportunistic species. Indeed, structure followed a pattern of isolation by environment, where the establishment of dispersers is limited by environmental differences among populations, resulting in the disruption of genetic connectivity and the divergence of populations through genetic drift and divergent natural selection. With this work, we highlight the potential of incorporating environmental differences among population locations to complement the more traditional approach of isolation by geographic distance, in order to obtain a holistic understanding of the processes driving structure in natural populations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3