Abstract
ABSTRACTHigh-resolution computed tomography was used to explore age-related trabecular change in male human ribs ranging in age from 20–95 years (Mean=55 years, SD=21.634 years) from the Texas State Donated Skeletal Collection (TXSTDSC). Two regions of interest (ROIs), midshaft (50%) and anterior (75%) were extracted from each scan to analyze age-related trabecular change. Dragonfly V4.1 was used to isolate cortical bone volumes of interest (VOIs) and three trabecular VOIs for each ROI; one each along the cutaneous cortex, the center of the medullary cavity, and the pleural cortex. Each trabecular VOI was analyzed for bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular spacing (TbSp), connectivity density (Conn.D), and degree of anisotropy (DA), within and between the 50 and 75% ROIs. Overall, the cutaneous VOIs at both the 50% and 75% ROIs exhibited greater BV/TV, TbTh, and Conn.D when compared to the center and pleural VOIs. All results are consistent with expected biomechanical strain on human ribs. Both trabecular variables and cortical bone volume are only weakly associated with age. These results show that 3D analysis of trabecular bone volume does not improve visualization or understanding of trabecular bone changes with age over traditional 2D methods. Future research should incorporate female samples to explore sex-related trabecular change variation.HIGHLIGHTS3D analysis of change in trabecular structure along the rib length and with ageTrabecular spacing at midshaft shows highest correlations with age-at-deathRelative cortical area is more strongly correlated with age in anterior ribs than at midshaft
Publisher
Cold Spring Harbor Laboratory