Amygdala connectivity as a predisposing neural feature of stress-induced behaviour during the COVID-2019 outbreak in Hubei

Author:

Zhou YuanORCID,He Yuwen,Jin Yuening,Rong Bei,Zeidman Peter,Huang Huan,Feng Yuan,Cui Jian,Zhang Shudong,Wang Yun,Wang Gang,Xiang Yutao,Wang Huiling

Abstract

AbstractThe amygdala plays an important role in the regulation of stress and anxiety. However, little is known about the relationship between amygdala connectivity and subsequent stress-induced behavior. The current study investigated whether amygdala connectivity measured before experiencing stress is a predisposing neural feature of subsequent stress-induced behavior while individuals face an emergent and unexpected event like the COVID-19 outbreak. Using an fMRI cohort established before the pandemic in Wuhan, Hubei, we found that resting-state functional connectivity (rsFC) of the right amygdala with the dorsomedial prefrontal cortex (dmPFC) was negatively correlated with the stress-induced behavior of these volunteers during the COVID-2019 outbreak in Hubei. Furthermore, the self-connection of the right amygdala, inferred using dynamic causal modeling, was negatively correlated with stress-induced behavior in this cohort. A significant correlation between the right amygdala-dmPFC rsFC and self-connection of the right amygdala was found. Additionally, after three months of the COVID-19 outbreak in Hubei when the stressor weakened - and in another cohort collected in regions outside Hubei where the individuals experienced a lower level of stress - the relationship between the amygdala-dmPFC rsFC and the stress-induced behavior disappeared. Our findings support that amygdala connectivity is a predisposing neural feature of stress-induced behavior in the COVID-19 outbreak in Hubei, suggesting the amygdala connectivity before stress predicts subsequent behavior while facing an emergent and unexpected event. And thus our findings provide an avenue for identifying individuals vulnerable to stress using intrinsic brain function before stress as an indicator.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3