Abstract
AbstractGene-lifestyle interaction analyses have identified genetic variants whose effect on cardiovascular risk-raising traits is modified by alcohol consumption and smoking behavior. The biological mechanisms of these interactions remain largely unknown, but may involve epigenetic modification linked to perturbation of gene expression. Diverse, individual-level datasets including genotypes, methylation and gene expression conditional on lifestyle factors, are ideally suited to study this hypothesis, yet are often unavailable for large numbers of individuals. Summary-level data, such as effect sizes of genetic variants on a phenotype, present an opportunity for multi-omic study of the biological mechanisms underlying gene-lifestyle interactions. We propose a method that unifies disparate, publicly available summary datasets to build mechanistic hypotheses in models of smoking behavior and alcohol consumption with blood lipid levels and blood pressure measures. Of 897 observed genetic interactions, discovered through genome-wide analysis in diverse multi-ethnic cohorts, 48 were identified with lifestyle-related differentially methylated sites within close proximity and linked to target genes. Smoking behavior and blood lipids account for 37 and 28 of these signals respectively. Five genes also showed differential expression conditional on lifestyle factors within these loci with mechanisms supported in the literature. Our analysis demonstrates the utility of summary data in characterizing observed gene-lifestyle interactions and prioritizes genetic loci for experimental follow up related to blood lipids, blood pressure, and cigarette smoking. We show concordance between multiple trait-or exposure-related associations from diverse assays, driving hypothesis generation for better understanding gene-lifestyle interactions.
Publisher
Cold Spring Harbor Laboratory