The immediate early protein 1 of the human herpesvirus 6B counteracts NBS1 and prevents homologous recombination repair pathways

Author:

Collin Vanessa,Biquand ÉliseORCID,Tremblay VincentORCID,Gaudreau-Lavoie Élise,Dessapt JulienORCID,Gravel AnnieORCID,Flamand LouisORCID,Fradet-Turcotte AmélieORCID

Abstract

AbstractIntegration of viral DNA in the genome of host cells triggers host-pathogens interaction that are consequential for the virus and the infected cells. In cells semi-permissive for viral replication, the human herpesvirus 6B (HHV-6B) integrates its genome into the host telomeric sequences. Interestingly, HHV-6B integration in gametes leads to a condition called inherited chromosomally integrated HHV-6B (iciHHV-6B), where the newborn carries a copy of HHV-6B in every cell of its body and is associated with health issues such as spontaneous abortion rates, pre-eclampsia and angina pectoris when transmitted to its offspring. Unlike retroviruses, the mechanism that leads to viral integration of DNA viruses and the consequences of these events on host cells are not well characterized. Here, we report that HHV-6B infection induce genomic instability by suppressing the ability of the host cell to sense DNA double-strand break (DSB). We discovered that this phenotype is mediated by the ability of the immediate-early HHV-6B protein IE1 to bind, delocalize, and inhibit the functions of the DNA damage sensor NBS1. These results raise the possibility that the genomic instability induced by the expression of IE1 from integrated genomes contributes to the development of iciHHV-6B-associated disease. As reported for other types of viruses, the inhibition of DSB sensing and signaling promotes viral replication. However, HHV-6B integration is not affected when this pathway is inhibited, supporting models where integration of the viral genome at telomeric sequence is dictated by mechanisms that promote telomere-elongation in a given infected cell and not solely DNA repair mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3