Phenotypic plasticity and genetic control in colorectal cancer evolution

Author:

Househam JacobORCID,Heide Timon,Cresswell George D,Lynn Claire,Spiteri Inmaculada,Mossner Max,Kimberley Chris,Gabbutt Calum,Lakatos Eszter,Fernandez-Mateos Javier,Chen Bingjie,Zapata Luis,James Chela,Berner Alison,Schmidt Melissa,Baker Ann-Marie,Nichol Daniel,Costa Helena,Mitchinson Miriam,Jansen Marnix,Caravagna Giulio,Shibata Darryl,Bridgewater John,Rodriguez-Justo Manuel,Magnani LucaORCID,Sottoriva AndreaORCID,Graham Trevor A

Abstract

AbstractCancer evolution is driven by natural selection acting upon phenotypic trait variation. However, the extent to which phenotypic variation within a tumour is a consequence of intra-tumour genetic heterogeneity remains undetermined. Here we show that colorectal cancer cells frequently have highly plastic phenotypic traits in vivo in patient tumours. We measured the degree to which trait variation reflects genetic ancestry by quantifying the phylogenetic signal of gene expression across 297 samples with multi-region paired whole genome and transcriptome sequencing collected from 27 primary colorectal cancers. Within-tumour phylogenetic signal for genes and pathways was detected only infrequently, suggesting that the majority of intra-tumour variation in gene expression programmes was not strongly heritable. Expression quantitative trait loci analyses (eQTL) identified a small number of putative mechanisms of genetic control of gene expression due to the cis-acting coding, non-coding and structural genetic alteration, but most gene expression variation was not explained by our genetic analysis. Leveraging matched chromatin-accessibility sequencing data, enhancer mutations with cis regulatory effects on gene expression were associated with a change in chromatin accessibility, indicating that non-coding variation can have phenotypic consequence through modulation of the 3D architecture of the genome. This study maps the evolution of transcriptional variation during cancer evolution, highlighting that intra-tumour phenotypic plasticity is pervasive in colorectal malignancies, and may play key roles in further tumour evolution, from metastasis to therapy resistance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3