Curcumin micronization by supercritical fluid: in vitro and in vivo biological relevance

Author:

Sachett AdrieliORCID,Gallas-Lopes MatheusORCID,Benvenutti RadharaniORCID,Marcon MatheusORCID,Aguiar Gean Pablo S.ORCID,Herrmann Ana PaulaORCID,Oliveira J. VladimirORCID,Siebel Anna M.ORCID,Piato AngeloORCID

Abstract

ABSTRACTCurcumin, a polyphenol extracted from the rhizome of Curcuma longa L. (Zingiberaceae), is shown to have antioxidant, anti-inflammatory, neuroprotective, anxiolytic, and antidepressant properties in both preclinical and clinical studies. However, its low bioavailability is a limitation for its potential adoption as a therapeutic agent. The process of micronization can overcome this barrier by reducing the particle size and increasing the dissolution rate, potentially improving the bioavailability of the compounds of interest. In this study, we compared the in vitro antioxidant effects of curcumin (CUR) and micronized curcumin (MC) and studied their effects on behavioral and neurochemical parameters in zebrafish submitted to unpredictable chronic stress (UCS). MC (1 g/L) presented higher antioxidant activity in vitro as compared to CUR, as measured by iron-reducing antioxidant power (FRAP), 1,1-diphenyl-2-2-picyryl-hydrazyl radical removal (DPPH), and deoxyribose tests. UCS increased total distance traveled in the social interaction test (SI), while decreased crossings, time, and entries to the top area in the novel tank test (NTT). No effects of UCS were observed in the open tank test (OTT). The behavioral effects induced by UCS were not blocked by any curcumin preparation. UCS also decreased non-protein thiols (NPSH) levels, while increased glutathione reductase (GR) activity and thiobarbituric acid reactive substances (TBARS) levels on zebrafish brain. MC presented superior antioxidant properties than CUR in vivo, blocking the stress-induced neurochemical effects. Although this study did not measure the concentration of curcumin on the zebrafish brain, our results suggest that micronization increases the bioavailability of curcumin, potentiating its antioxidant activity both in vitro and in vivo. Our study also demonstrates that counteracting the oxidative imbalance induced by UCS is not sufficient to block its behavioral effects.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3