3D Convolutional Neural Networks for Classification of Alzheimer’s and Parkinson’s Disease with T1-Weighted Brain MRI

Author:

Dhinagar Nikhil J.ORCID,Thomopoulos Sophia I.ORCID,Owens-Walton Conor,Stripelis Dimitris,Ambite Jose LuisORCID,Ver Steeg Greg,Weintraub Daniel,Cook Philip,McMillan Corey,Thompson Paul M.ORCID

Abstract

ABSTRACTParkinson’s disease (PD) and Alzheimer’s disease (AD) are progressive neurodegenerative disorders that affect millions of people worldwide. In this work, we propose a deep learning approach to classify these diseases based on 3D T1-weighted brain MRI. We analyzed several datasets including the Parkinson’s Progression Markers Initiative (PPMI), an independent dataset from the University of Pennsylvania School of Medicine (UPenn), the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and the Open Access Series of Imaging Studies (OASIS) dataset. The UPenn and OASIS datasets were used as independent test sets to evaluate the model performance during inference. We also implemented a random forest classifier as a baseline model by extracting key radiomics features from the same T1-weighted MRI scans. The proposed 3D convolutional neural network (CNN) model was trained from scratch for the classification tasks. For AD classification, the 3D CNN model achieved an ROC-AUC of 0.878 on the ADNI test set and an average ROC-AUC of 0.789 on the OASIS dataset. For PD classification, the proposed 3D CNN model achieved an ROC-AUC of 0.667 on the PPMI test set and an average ROC-AUC of 0.743 on the UPenn dataset. Model performance was largely maintained when using only 25% of the training dataset. The 3D CNN outperformed the random forest classifier for both the PD and AD tasks. The 3D CNN also generalized better on unseen MRI data from different imaging centers. These approaches show promise for screening of PD and AD patients using only T1-weighted brain MRI, which is relatively widely available. This model with additional validation could also be used to help differentiate between challenging cases of AD and PD when they present with similarly subtle motor and non-motor symptoms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3