Decoding Images from Multi-Region, High Resolution, Electrode Recordings In the Mouse Visual System

Author:

Fritz ChrisORCID

Abstract

1AbstractWe hypothesize that deep networks are superior to linear decoders at recovering visual stimuli from neural activity. Using high-resolution, multielectrode Neuropixels recordings, we verify this is the case for a simple feed-forward deep neural network having just 7 layers. These results suggest that these feed-forward neural networks and perhaps more complex deep architectures will give superior performance in a visual brain-machine interface.

Publisher

Cold Spring Harbor Laboratory

Reference21 articles.

1. Brain–machine interfaces: past, present and future;In: TRENDS in Neurosciences,2006

2. The statistics of natural images;In: Network: computation in neural systems,1994

3. Sparse coding and decorrelation in primary visual cortex during natural vision;In: Science,2000

4. Coding of natural scenes in primary visual cortex;In: Neuron,2003

5. Population code in mouse V1 facilitates readout of natural scenes through increased sparseness;In: Nature neuroscience,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3