Photosensitized Electrospun Nanofibrous Filters for Capturing and Killing Airborne Coronaviruses under Visible Light Irradiation

Author:

Shen Hongchen,Zhou Zhe,Wang Haihuan,Zhang Mengyang,Han Minghao,Shen YunORCID,Shuai DanmengORCID

Abstract

AbstractTo address the challenge of the airborne transmission of SARS-CoV-2, photosensitized electrospun nanofibrous membranes were fabricated to effectively capture and inactivate coronavirus aerosols. With an ultrafine fiber diameter (∼ 200 nm) and a small pore size (∼ 1.5 µm), the optimized membranes caught 99.2% of the aerosols of the murine hepatitis virus A59 (MHV-A59), a coronavirus surrogate for SARS-CoV-2. In addition, rose bengal was used as the photosensitizer for the membranes because of its excellent reactivity in generating virucidal singlet oxygen, and the membranes rapidly inactivated 98.9% of MHV-A59 in virus-laden droplets only after 15 min irradiation of simulated reading light. Singlet oxygen damaged the virus genome and impaired virus binding to host cells, which elucidated the mechanism of disinfection at a molecular level. Membrane robustness was also evaluated, and no efficiency reduction for filtering MHV-A59 aerosols was observed after the membranes being exposed to both indoor light and sunlight for days. Nevertheless, sunlight exposure photobleached the membranes, reduced singlet oxygen production, and compromised the performance of disinfecting MHV-A59 in droplets. In contrast, the membranes after simulated indoor light exposure maintained their excellent disinfection performance. In summary, photosensitized electrospun nanofibrous membranes have been developed to capture and kill airborne environmental pathogens under ambient conditions, and they hold promise for broad applications as personal protective equipment and indoor air filters.SynopsisPhotosensitized electrospun nanofibrous filters with excellent capture-and-kill performance against coronaviruses were designed and implemented to prevent the airborne transmission of COVID-19.Table of Contents

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. CDC. Coronavirus disease 2019 (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html.

2. Transmission of SARS-CoV-2: implications for infection prevention precautions: scientific brief, b 09 July 2020. https://apps.who.int/iris/handle/10665/333114.

3. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

4. Disposable face masks and reusable face coverings as non-pharmaceutical interventions (NPIs) to prevent transmission of SARS-CoV-2 variants that cause coronavirus disease (COVID-19): role of new sustainable NPI design innovations and predictive mathematical modelling;Sci. Total Environ,2021

5. Association of social distancing and face mask use with risk of COVID-19;Nat. Commun,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3