A newly identified group of P-like (PL) fimbriae from extra-intestinal pathogenic Escherichia coli (ExPEC) encode distinct adhesin subunits and mediate adherence to host cells

Author:

Habouria Hajer,Bessaiah Hicham,Buron Julie,Houle Sébastien,Dozois Charles M.

Abstract

AbstractFimbrial adhesins play a critical role for bacterial adherence and biofilm formation. Sequencing of avian pathogenic Escherichia coli (APEC) strain QT598 identified a fimbrial gene cluster belonging to the π group that we named PL (P-like) fimbriae, since genetic organization and sequence are similar to Pap and related fimbriae. Screening of genomic databases indicated that genes encoding PL fimbriae located on IncF plasmids are present in a diversity of E. coli isolates from poultry, human systemic infections, and other sources. As with P fimbriae, PL fimbriae exhibit sequence divergence in adhesin encoding genes, and strains could be divided into 5 classes based on differences in sequences of the PlfG adhesin protein. The plf genes from two predominant PlfG adhesin classes, PlfG-I and PlfG-II were cloned. PL fimbriae were visualized by electron microscopy, promoted biofilm formation, demonstrated distinct hemagglutination profiles and promoted adherence to human bladder and kidney epithelial cell lines. Hybrid fimbriae comprised of genes from plfQT598 wherein plfG was replaced by papG encoding adhesin genes were also shown to be functional and mediate adherence to epithelial cells, further indicating similarity and functional compatibility between these two types of fimbriae. Although deletion of plf genes did not significantly reduce colonization of the mouse urinary tract, plf gene expression was increased over 40-fold in the bladder compared to during in vitro culture. Overall, PL fimbriae represent a new group of fimbriae demonstrating both functional differences and similarities to P fimbriae and may contribute to adherence to cells and colonization of host tissues.ImportanceFimbriae are important colonization factors in many bacterial species. The identification of a new type of fimbriae encoded on some IncF plasmids in E. coli was investigated. Genomic sequences demonstrated these fimbrial gene clusters have genetic diversity, particularly in the adhesin encoding PlfG gene. Functional studies demonstrated differences in hemagglutination specificity, although both types of Plf adhesin under study mediated adherence to human urinary epithelial cells. Such fimbriae may represent previously unrecognized adhesins that could contribute to host specificity and tissue tropism of some E. coli strains.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3