Accurate Automatic Glioma Segmentation in Brain MRI images Based on CapsNet

Author:

Aziz M. Jalili,Zade A. Amiri Tehrani,Farnia P.,Alimohamadi M.,Makkiabadi B.,Ahmadian A.,Alirezaie J.

Abstract

AbstractGlioma is a highly invasive type of brain tumor with an irregular morphology and blurred infiltrative borders that may affect different parts of the brain. Therefore, it is a challenging task to identify the exact boundaries of the tumor in an MR image. In recent years, deep learning-based Convolutional Neural Networks (CNNs) have gained popularity in the field of image processing and have been utilized for accurate image segmentation in medical applications. However, due to the inherent constraints of CNNs, tens of thousands of images are required for training, and collecting and annotating such a large number of images poses a serious challenge for their practical implementation. Here, for the first time, we have optimized a network based on the capsule neural network called SegCaps, to achieve accurate glioma segmentation on MR images. We have compared our results with a similar experiment conducted using the commonly utilized U-Net. Both experiments were performed on the BraTS2020 challenging dataset. For U-Net, network training was performed on the entire dataset, whereas a subset containing only 20% of the whole dataset was used for the SegCaps. To evaluate the results of our proposed method, the Dice Similarity Coefficient (DSC) was used. SegCaps and U-Net reached DSC of 87.96% and 85.56% on glioma tumor core segmentation, respectively. The SegCaps uses convolutional layers as the basic components and has the intrinsic capability to generalize novel viewpoints. The network learns the spatial relationship between features using dynamic routing of capsules. These capabilities of the capsule neural network have led to a 3% improvement in results of glioma segmentation with fewer data while it contains 95.4% fewer parameters than U-Net.

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

1. Brain Tumors: Challenges and Opportunities to Cure

2. Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network;Journal of Healthcare Engineering,2018

3. State of the art survey on MRI brain tumor segmentation

4. Computer-assisted brain tumor type discrimination using magnetic resonance imaging features;Biomedical Engineering Letters,2018

5. Review of MRI-based Brain Tumor Image Segmentation Using Deep Learning Methods;Procedia Computer Science,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3