Thalamic state controls timing and synchronization of primary somatosensory cortical representations in the awake mouse

Author:

Borden Peter Y,Wright Nathaniel CORCID,Morrissette Arthur E,Jaeger DieterORCID,Haider BilalORCID,Stanley Garrett BORCID

Abstract

SummaryThe thalamus controls transmission of sensory signals from periphery to cortex, ultimately shaping perception. Despite this significant role, dynamic thalamic gating and the consequences for downstream cortical sensory representations have not been well studied in the awake brain. We optogenetically modulated the ventro-posterior medial thalamus in the vibrissa pathway of the awake mouse, and measured spiking activity in the thalamus, and at the level of primary somatosensory cortex (S1) using extracellular electrophysiology and genetically encoded voltage imaging. Thalamic hyperpolarization significantly amplified thalamic sensory-evoked spiking through enhanced bursting, yet surprisingly the S1 cortical response was not amplified, but instead timing precision was significantly increased, spatial activation more focused, and there was an increased synchronization of cortical inhibitory neurons. A thalamocortical network model implicates the precise timing of feedforward thalamic spiking, and timing-sensitive engagement of synaptic depression, presenting a highly sensitive, state-dependent timing-based gating of sensory signaling to cortex.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3