Parallel genetic changes underlie integrated craniofacial traits in an adaptive radiation of trophic specialist pupfishes

Author:

St. John Michelle E.,Dunker Julia C.,Richards Emilie J.,Romero Stephanie,Martin Christopher H.ORCID

Abstract

AbstractMany factors such as divergence time, shared standing genetic variation, frequency of introgression, and mutation rates can influence the likelihood of whether populations adapt to similar environments via parallel or non-parallel genetic changes. However, the frequency of parallel vs non-parallel genetic changes resulting in parallel phenotypic evolution is still unknown. In this study, we used a QTL mapping approach to investigate the genetic basis of highly divergent craniofacial traits between scale- and snail-eating trophic specialist species across similar hypersaline lake environments in an adaptive radiation of pupfishes endemic to San Salvador Island, Bahamas. We raised F2 intercrosses of scale- and snail-eaters from two different lake populations of sympatric specialists, estimated linkage maps, scanned for significant QTL for 30 skeletal and craniofacial traits, and compared the location of QTL between lakes to quantify parallel and non-parallel genetic changes. We found strong support for parallel genetic changes in both lakes for five traits in which we detected a significant QTL in at least one lake. However, many of these shared QTL affected different, but highly correlated craniofacial traits in each lake, suggesting that pleiotropy and trait integration should not be neglected when estimating rates of parallel evolution. We further observed a 23-52% increase in adaptive introgression within shared QTL, suggesting that introgression may be important for parallel evolution. Overall, our results suggest that the same genomic regions contribute to parallel integrated craniofacial phenotypes across lakes. We also highlight the need for more expansive searches for shared QTL when testing for parallel evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3