Abstract
Sensory experiences are accompanied by the perception of the passage of time; a cell phone vibration, for instance, is sensed as brief or long. The neuronal mechanisms underlying the perception of elapsed time remain unknown1. Recent work agrees on a role for cortical processing networks2,3, however the causal function of sensory cortex in time perception has not yet been specified. We hypothesize that the mechanisms for time perception are embedded within primary sensory cortex and are thus governed by the basic rules of sensory coding. By recording and optogenetically modulating neuronal activity in rat vibrissal somatosensory cortex, we find that the percept of stimulus duration is dilated and compressed by optogenetic excitation and inhibition, respectively, during stimulus delivery. A second set of rats judged the intensity of tactile stimuli; here, optogenetic excitation amplified the intensity percept, demonstrating sensory cortex to be the common gateway to both time and stimulus feature processing. The coding algorithms for sensory features are well established4–10. Guided by these algorithms, we formulated a 3-stage model beginning with the membrane currents evoked by vibrissal and optogenetic drive and culminating in the representation of perceived time; this model successfully replicated rats’ choices. Our finding that stimulus coding is intrinsic to sense of time disagrees with dedicated pacemaker-accumulator operation models11–13, where sensory input acts only to trigger the onset and offset of the timekeeping process. Time perception is thus as deeply intermeshed within the sensory processing pathway as is the sense of touch itself14,15 and can now be treated through the computational language of sensory coding. The model presented here readily generalizes to humans14,16 and opens up new approaches to understanding the time misperception at the core of numerous neurological conditions17,18.
Publisher
Cold Spring Harbor Laboratory