Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning

Author:

Chang Yuzhou,He Fei,Wang JuexinORCID,Chen Shuo,Li Jingyi,Liu Jixin,Yu Yang,Su Li,Ma Anjun,Allen Carter,Lin Yu,Sun Shaoli,Liu Bingqiang,Otero Jose,Chung Dongjun,Fu Hongjun,Li Zihai,Xu Dong,Ma Qin

Abstract

AbstractSpatially resolved transcriptomics provides a new way to define spatial contexts and understand biological functions in complex diseases. Although some computational frameworks can characterize spatial context via various clustering methods, the detailed spatial architectures and functional zonation often cannot be revealed and localized due to the limited capacities of associating spatial information. We present RESEPT, a deep-learning framework for characterizing and visualizing tissue architecture from spatially resolved transcriptomics. Given inputs as gene expression or RNA velocity, RESEPT learns a three-dimensional embedding with a spatial retained graph neural network from the spatial transcriptomics. The embedding is then visualized by mapping as color channels in an RGB image and segmented with a supervised convolutional neural network model. Based on a benchmark of sixteen 10x Genomics Visium spatial transcriptomics datasets on the human cortex, RESEPT infers and visualizes the tissue architecture accurately. It is noteworthy that, for the in-house AD samples, RESEPT can localize cortex layers and cell types based on a pre-defined region-or cell-type-specific genes and furthermore provide critical insights into the identification of amyloid-beta plaques in Alzheimer’s disease. Interestingly, in a glioblastoma sample analysis, RESEPT distinguishes tumor-enriched, non-tumor, and regions of neuropil with infiltrating tumor cells in support of clinical and prognostic cancer applications.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3