Allosteric control of Ubp6 and the proteasome via a bidirectional switch

Author:

Hung Ka Ying SharonORCID,Klumpe Sven,Eisele Markus R.,Elsasser Suzanne,Tian Geng,Sun Shuangwu,Moroco Jamie A.,Cheng Tat Cheung,Joshi Tapan,Seibel Timo,Van Dalen Duco,Feng Xin-Hua,Lu Ying,Ovaa Huib,Engen John R.,Lee Byung-Hoon,Rudack Till,Sakata Eri,Finley Daniel

Abstract

AbstractThe proteasome is the principal cellular protease, and recognizes target proteins that have been covalently marked by ubiquitin chains. The ubiquitin signal is subject to rapid editing at the proteasome, allowing it to reject substrates based on topological features of their attached ubiquitin chains. Editing is mediated by a key regulator of the proteasome, deubiquitinating enzyme Ubp6. The proteasome activates Ubp6, whereas Ubp6 inhibits the proteasome–both by deubiquitinating proteasome-bound ubiquitin conjugates, and through a noncatalytic effect that does not involve deubiquitination. We report mutants in both Ubp6 and proteasome subunit Rpt1 that abrogate Ubp6 activation. The Ubp6 mutations fall within its ILR element, defined here, which is conserved from yeast to mammals. The ILR is a component of the BL1 blocking loop, other parts of which obstruct ubiquitin access to the catalytic groove in free Ubp6. Rpt1 docking at the ILR opens the catalytic groove by rearranging not only BL1 but also a novel network of three directly interconnected active-site-blocking loops. Ubp6 activation and noncatalytic proteasome inhibition by Ubp6 are linked in that they were eliminated by the same Ubp6 and Rpt1 mutations. Ubp6 and ubiquitin together drive the proteasome into a unique conformational state associated with proteasome inhibition. Our results identify a multicomponent allosteric switch that exerts simultaneous control over the activity of both Ubp6 and the proteasome, and suggest that their active states are in general mutually exclusive. The findings lead to a new paradigm for allosteric control of deubiquitinating enzymes.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3