ECM dimensionality tunes actin tension to modulate the endoplasmic reticulum and spheroid phenotype

Author:

Kai FuiBoon,Ou Guanqing,Tourdot Richard W.,Stashko Connor,Gaietta Guido,Swift Mark F.,Volkmann Niels,Long Alexandra F.,Han Yulong,Huang Hector H.,Northey Jason J.,Leidal Andrew M.,Viasnoff Virgile,Bryant David M.ORCID,Guo Wei,Wiita Arun P.,Guo Ming,Dumont Sophie,Hanein Dorit,Radhakrishnan Ravi,Weaver Valerie M.ORCID

Abstract

AbstractPrimary tissue organoids and cell spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a three dimensional laminin-rich extracellular matrix supports the polarized, stress resilient spheroid phenotype of mammary epithelial cells. Cells within a three dimensional laminin-rich extracellular matrix decreased and redistributed the actin crosslinker filamin to reduce their cortical actin tension. Cells with low cortical actin tension had increased plasma membrane protrusions that promoted negative plasma membrane curvature and fostered protein associations with the plasma membrane, consistent with efficient protein secretion. By contrast, cells engaging a laminin-rich extracellular matrix in two dimensions had high filamin-dependent cortical actin tension, exhibited compromised endoplasmic reticulum function including increased expression of PKR-like Endoplasmic Reticulum Kinase signaling effectors, and had compromised protein secretion. Cells with low filamin-mediated cortical actin tension and reduced endoplasmic reticulum stress response signaling secreted, and assembled, a polarized endogenous basement membrane and survived better, and their spheroids were more resistant to exogenous stress. The findings implicate filamin-dependent cortical actin tension in endoplasmic reticulum function and highlight a role for mechanics in organoid homeostasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3