Evolution of Regulatory Complexity for Cell-Cycle Control

Author:

von der Dunk Samuel H. A.ORCID,Snel BerendORCID,Hogeweg Paulien

Abstract

AbstractHow complexity arises is a fundamental evolutionary question. Complex gene regulation is thought to arise by the interplay between adaptive and non-adaptive forces at multiple organizational levels. Using a computational model, we investigate how complexity arises in cell-cycle regulation. Starting from the well-known Caulobacter crescentus network, we study how cells adapt their cell-cycle behaviour to a gradient of limited nutrient conditions using 10 replicate in silico evolution experiments.We find adaptive expansion of the gene regulatory network: improvement of cell-cycle behaviour allows cells to overcome the inherent cost of complexity. Replicates traverse different evolutionary trajectories leading to distinct eco-evolutionary strategies. In four replicates, cells evolve a generalist strategy to cope with a variety of nutrient levels; in two replicates, different specialist cells evolve for specific nutrient levels; in the remaining four replicates, an intermediate strategy evolves. The generalist and specialist strategies are contingent on the regulatory mechanisms that arise early in evolution, but they are not directly linked to network expansion and overall fitness.This study shows that functionality of cells depends on the combination of gene regulatory network topology and genome structure. For example, the positions of dosage-sensitive genes are exploited to signal to the regulatory network when replication is completed, forming a de novo evolved cell-cycle checkpoint. Complex gene regulation can arise adaptively both from expansion of the regulatory network and from the genomic organization of the elements in this network, demonstrating that to understand complex gene regulation and its evolution, it is necessary to integrate systems that are often studied separately.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3