Comparison of gait speed reserve, usual gait speed, and maximum gait speed of adults aged 50+ in Ireland using explainable machine learning

Author:

Davis James R.C.ORCID,Knight Silvin P.ORCID,Donoghue Orna A.ORCID,Hernández BelindaORCID,Kenny Rose AnneORCID,Romero-Ortuno RomanORCID

Abstract

AbstractGait speed is a measure of general fitness. Changing from usual (UGS) to maximum (MGS) gait speed requires a general effort across many body systems. The difference, MGS – UGS, is defined as gait speed reserve (GSR). In the present study, using 3925 participants aged 50+ from Wave 3 of The Irish Longitudinal Study on Ageing (TILDA), we used a gradient boosted trees-based stepwise feature selection pipeline for the discovery of clinically relevant predictors of GSR, UGS, and MGS using a shortlist of 88 features across 5 categories (socio-demographics/anthropometrics/medical history; cardiovascular system; physical strength; sensory; and cognitive/psychological). The TreeSHAP explainable machine learning package was used to analyse the input-output relationships of the three models.The mean from 5-fold cross validation on training data and the score on test data for the models are: 0.38 (0.04) and 0.41 for UGS; 0.45 (0.04) and 0.46 for MGS; and 0.19 (0.02) and 0.21 for GSR.Features selected for the UGS model were: age, chair stands time, body mass index, grip strength, number of medications, resting state pulse interval, mean motor reaction time in the choice reaction time test, height, depression score, sit-to-stand difference in diastolic blood pressure, and left visual acuity.The features selected for the MGS model were: age, grip strength, repeated chair stands time, body mass index, education, mean motor reaction time in the choice reaction time test, number of medications, height, the standard deviation of the mean reaction time in the sustained attention to response task, mean heart rate at resting state, fear of falling, MOCA errors, orthostatic intolerance during active stand, smoking status, total heart beat power during paced breathing, the root mean square of successive differences between heartbeats during paced breathing, and visual acuity.Finally, the features chosen for the GSR model were: mean motor reaction time in the choice reaction time test, grip strength, education, chair stands time, MOCA errors, accuracy proportion in the sound induced flash illusion (two beeps and one flash with stimulus-onset asynchrony of +150 ms), fear of falling, height, age, sex, orthostatic intolerance, MMSE errors, and number of cardiovascular conditions.MGS and UGS were more explainable than GSR. All three models contain features from all five categories. There were common features to all three models (age, grip strength, chair stands time, mean motor reaction time in the choice reaction time test, and height), but also some features unique to each of them. Overall, findings on all three models were clinically plausible and support a network physiology approach to the understanding of predictors of performance-based tasks. By employing an explainable machine learning technique, our observations may help clinicians gain new insights into the multisystem predictors of gait speed and gait speed reserve in older adults.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3